1.简述太阳的形成300字
太阳系的形成和演化始于46亿年前一片巨大分子云中一小块的引力坍缩。大多坍缩的质量集中在中心,形成了太阳,其余部分摊平并形成了一个原行星盘,继而形成了行星、卫星、陨星和其他小型的太阳系天体系统。
这被称为星云假说的广泛接受模型,最早是由18世纪的伊曼纽·斯威登堡、伊曼努尔·康德和皮埃尔西蒙·拉普拉斯提出。其随后的发展与天文学、物理学、地质学和行星学等多种科学领域相互交织。自1950年代太空时代降临,以及1990年代太阳系外行星的发现,此模型在解释新发现的过程中受到挑战又被进一步完善化。
从形成开始至今,太阳系经历了相当大的变化。有很多卫星由环绕其母星气体与尘埃组成的星盘中形成,其他的卫星据信是俘获而来,或者来自于巨大的碰撞(地球的卫星月球属此情况)。天体间的碰撞至今都持续发生,并为太阳系演化的中心。行星的位置经常迁移,某些行星间已经彼此易位。这种行星迁移现在被认为对太阳系早期演化起负担起绝大部分的作用。
就如同太阳和行星的出生一样,它们最终将灭亡。大约50亿年后,太阳会冷却并向外膨胀超过现在的直径很多倍(成为一个红巨星),抛去它的外层成为行星状星云,并留下被称为白矮星的恒星尸骸。在遥远的未来,太阳的环绕行星会逐渐被经过的恒星的引力卷走。它们中的一些会被毁掉,另一些则会被抛向星际间的太空。最终,数万亿年之后,太阳终将会独自一个,不再有其它天体在太阳系轨道上。
2.太阳是怎么形成的
太阳系是四十六亿年前伴随着太阳的形成而形成的。
太阳星云由于自身引力的作用而逐渐凝聚,渐渐形成了一个由多个天体按一定规律排列组成的天体系统。太阳系的成员包括一颗恒星、九大行星、至少六十三颗卫星、约一百万颗小行星、无数的彗星和星际物质等。
太阳是银河系中一颗普通的恒星。根据恒星演化理论,太阳与其他大多数恒星一样,是从一团星际气体云中诞成的。
这团气体云存在于约四十六亿年前,位于银河系的盘状结构中,离中心约25亿亿公里。其体积约为现在太阳的500万倍,主要成份是氢分子。
这就是“太阳星云”。经历四十多万年的收缩凝聚,星云中心诞生了一颗恒星,它就是太阳。
在太阳形成以后不久,残存在太阳周围的一些气体和尘埃,形成了围绕太阳旋转的行星和诸多小行星和彗星等其他太阳系天体,包括的地球和月亮。 太阳系九大行星与太阳的位置排列图。
从左到右分别是太阳、水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。 太阳在浩瀚的宇宙中谈不上有什么特殊性。
组成银河系的有大约两千亿颗恒星,而太阳只是其中中等大小的一颗。太阳已的年龄有五十亿岁,正处在它一生中的中年时期。
作为太阳系的中心,地球上所有生物的生长都直接或间接地需要它所提供的光和热。太阳内核的温度高达摄氏一千五百万度,在那儿发生着氢氦核聚变反应。
核聚变反应每秒钟要消耗掉约五百万吨的物质,并转换成能量以光子的形式释放出来。这些光子从太阳中心到达太阳表面要花一百多万年。
光子从太阳中心出发后先要经过辐射带,沿途在与原子微粒的碰撞丢失能量。随后要经过对流带,光子的能量被炽热的气体吸收,气体在对流中向表面传递能量。
到达对流带边缘后,光子已经冷却到五千五百摄氏度了。我们所能直接看到的是位于太阳表面的光球层。
光球层比较活跃,温度约为摄氏六千多度,属于比较“凉爽”部分。光球层上有一个个起伏的对流单元“米粒”。
每个米粒的直径在一千六百公里左右,它们是一个个从太阳内部升上来的热气流的顶问。就是在不断的对流活动中,太阳每秒钟向宇宙空间释放着相当于一千亿个百万吨级核弹的能量。
3.太阳的形成
最简练的答案:太阳的形成 我们生来就看见天上有个太阳,从小到大都没有发现太阳有什么大的变化。
就是从人类产生的那时起,人们就看到了今天这个模样的太阳。那么太阳是怎么形成的呢? 时间回溯到一百多亿年前,那时的宇宙比今天的宇宙要小许多,在宇宙的原始气体云中,银河系诞生了。
同时银河系中的第一代古老的恒星诞生了。那些恒星经过漫长的过程后,在各自的大爆发中死去,它们抛出大量烧剩下来的气体,这些气体在冰冷的星际空间里游荡,一团团汇聚成一大团,其中的组成物质主要是氢和氦,还有其他的各种元素。
由于万有引力的作用,大团气体开始凝缩成各个高密团块。各个团块的凝聚速度各不相同,每个团块的体积非常之大。
随着时间的推移,有的团块的靠近中央的部分开始加速凝聚,并产生旋转。由于气体的压缩,中间部分的温度上升。
其中一个团块的中间部分的温度上升到了700万度到1000万度以上,终于爆发了热核反应。一颗新的恒星诞生了,它就是太阳,诞生的时间大约在50亿年前。
空间中的剩余气体,一部分继续落入太阳,一部分由较重原子组成的物质,在绕太阳旋转过程中又各自凝聚成星体,它们就是九大行星、卫星及其他。 实在是难以想象,我们的地球,地球上的一切,包括我们的身体,居然是由已死恒星的残余物质所组成。
4.太阳是怎样形成的
太阳系是四十六亿年前伴随着太阳的形成而形成的。
太阳星云由于自身引力的作用而逐渐凝聚,渐渐形成了一个由多个天体按一定规律排列组成的天体系统。太阳系的成员包括一颗恒星、九大行星、至少六十三颗卫星、约一百万颗小行星、无数的彗星和星际物质等。
太阳是银河系中一颗普通的恒星。根据恒星演化理论,太阳与其他大多数恒星一样,是从一团星际气体云中诞成的。
这团气体云存在于约四十六亿年前,位于银河系的盘状结构中,离中心约25亿亿公里。其体积约为现在太阳的500万倍,主要成份是氢分子。
这就是“太阳星云”。经历四十多万年的收缩凝聚,星云中心诞生了一颗恒星,它就是太阳。
在太阳形成以后不久,残存在太阳周围的一些气体和尘埃,形成了围绕太阳旋转的行星和诸多小行星和彗星等其他太阳系天体,包括的地球和月亮。太阳系九大行星与太阳的位置排列图。
从左到右分别是太阳、水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。 太阳在浩瀚的宇宙中谈不上有什么特殊性。
组成银河系的有大约两千亿颗恒星,而太阳只是其中中等大小的一颗。太阳已的年龄有五十亿岁,正处在它一生中的中年时期。
作为太阳系的中心,地球上所有生物的生长都直接或间接地需要它所提供的光和热。太阳内核的温度高达摄氏一千五百万度,在那儿发生着氢氦核聚变反应。
核聚变反应每秒钟要消耗掉约五百万吨的物质,并转换成能量以光子的形式释放出来。这些光子从太阳中心到达太阳表面要花一百多万年。
光子从太阳中心出发后先要经过辐射带,沿途在与原子微粒的碰撞丢失能量。随后要经过对流带,光子的能量被炽热的气体吸收,气体在对流中向表面传递能量。
到达对流带边缘后,光子已经冷却到五千五百摄氏度了。我们所能直接看到的是位于太阳表面的光球层。
光球层比较活跃,温度约为摄氏六千多度,属于比较“凉爽”部分。光球层上有一个个起伏的对流单元“米粒”。
每个米粒的直径在一千六百公里左右,它们是一个个从太阳内部升上来的热气流的顶问。就是在不断的对流活动中,太阳每秒钟向宇宙空间释放着相当于一千亿个百万吨级核弹的能量。
5.太阳是怎么形成的
太阳是一颗恒星,而恒星的形成需要三个条件:氢气、引力和时间。其中引力最为关键,用难以想象的力量把各种物质聚集在一起,逐渐形成庞大的旋涡状星云。
↑旋涡状星云
在引力的持续作用下,被聚集在一起的物质(氢)不可避免会发生碰撞,于是温度升高,星云的密度增大,旋转的速度加快,最后形成一个超大型盘状星云。盘状星云核心的气体被引力扯拽,形成超高密度、超高温度的球体,这就是将来的恒星。引力越来越大,核心就越来越拥挤,挤到一定程度后,就会有巨大的气体柱从中间喷射出来。就像一个充满炙热气体的球体,因高速旋转而收缩,内部的气球从球体的两极喷射出来。但是气体柱喷射又会加剧物质运动,甚至还会吸入更多的气体和尘埃,随着旋转得越来越快,吸入的气体和尘埃越来越多,这些物质因为互相挤压,使得核心的温度越来越高,当核心温度达到1500万摄氏度,就会发生核聚变,释放出巨大的能量,此刻,一颗恒星就诞生了!
↑宇宙早期形成的大质量恒星
太阳在宇宙中质量不算大,但形成过程也是这样的。大约在50亿年前,太阳诞生于一个叫做“原始太阳星云”的星际尘云中。
——以上内容参考米莱童书《生命简史》
6.太阳是如何形成的
大爆炸模型认为,最初的宇宙是超高温、高密度的“一点。”
大约180亿年前,这“一点”突然爆炸了,仅用1036秒,伴随着真空相转移的过冷却现象,“一点”了瞬间几十个数量级的膨胀,成为一厘米规模的宇宙。其后宇宙继续膨胀,温度从几十亿摄氏度开始下降,大约在5500万摄氏度时,由降温过程的能量,生成中子、质子,它们又合成原子核,这些过程仅有3分钟。
约30万年后当宇宙的温度下降到3000摄氏度时,自由电子被原子核捕捉形成原子。在随后的大约3000万年中那些原子继续向外膨胀。
宇宙也继续冷却,到宇宙温度降至绝对零度之上167度时,原子开始化合形成稀薄气体。此后因密度波动、引力作用等开始向新的天体进化。
再经过100多亿年,显示出多种多样的物质形态, 成了今天的宇宙。自从150亿年前的宇宙大爆炸之后,星体和各星系一直各自向外飞散。
理论上讲,相互维系的重力应该减慢这个膨胀的速度,但是事实并非如此,实际上膨胀还在加速进行。美国普林斯顿大学的斯坦哈特说,宇宙无始、无终,一次次宇宙大爆炸将会永不止息,不断发生。
全文 上一讲我们介绍了宇宙是怎样通过大爆炸以后来诞生的,上一次我们只讲了宇宙从大爆炸,然后呢,仅仅的持续了多长时间呢?仅仅持续了三分多钟,也就说我们的宇宙基本框架就形成了。下面我们看,三分钟以后宇宙怎样演化,怎样一步一步的演化到我们现在的星球,现在的宇宙状态。
那么我就要问一个最简单的问题,也是最通俗的来问,是先有的鸡还是先有的蛋?我要回答什么问题呢?我要回答的是星系是怎样形成的这个问题。 的的确确现在有两种理论,那么哪两种理论呢?我们来看一下,这个图就是一个典型的宇宙从一开始大爆炸以后,逐步演化的一个示意图。
那么一开始呢,那一点就是大爆炸,大爆炸以后呢,宇宙不断的膨胀,同时温度也在不断地降低。那么中间的那一部分,就是我们现在看到的宇宙的背景辐射,或者叫做微波背景辐射,那么再往外边看到,宇宙在一点一点降低以后,物质慢慢就温度就越来越降低,越降低以后呢,物质的分子结构就越来越大。
换句话说呢,这个物质就开始大家往一块靠,就开始形成一些小的团块,这些团块在再慢慢聚合,一步一步地就形成后边大家看到的,这个星系。也就说由一点一点聚合,就聚合成星系了。
如果按照这个顺序的话,不管怎么说,后边这一段是由小的团块一点一点形成大的团块,那就相当于我们说的先有的蛋后有的鸡,就变大了。但是还有一种可能,突然之间就先形成一些大的团块,然后一点一点大的团块再把它分裂,那就是说的先有的鸡后有的蛋。
那么从什么时间开始形成星系呢?就是这个宇宙的温度我们说最初非常非常高,有一千亿度,如果说再往回追溯的话呢,甚至比一千亿度还要大。那么在这么高的温度下,我们说它不可能形成物质团块。
那么温度降低到四千度的时候,这个时候这些物质的温度就凉下来了,冷下来了。然后呢,大家有可能坐在一起来谈了,就可以靠拢了,所以到了四千度的时候,宇宙中就开始形成物质团块,换句话说,引力就开始起作用,这就是我们星系开始形成的时间,这个时间呢,大约是在宇宙爆炸之后的十亿年,宇宙从爆炸以后,到了十亿年,就开始形成物质团块了。
就按照这个图,叫做topdown,就先形成非常大的团块,宇宙一冷下来以后,突然之间这冷下来之后,大家就是非常的高兴,非常的欢呼,原来都在激发状态,谁也不得安宁,突然一冷下来以后所有物质成团了,只有成团了才能沉淀下来,先成团了一个很大很大的团块,多大呢,就像一个大饼一样,这个大饼成了以后,再慢慢慢慢分裂,就形成了下边的一个一个的星系。这是一种可能,这就是说,先有的什么?先有的鸡后有的蛋,先形成大的团块,然后再形成现在的星系。
还有一种可能,叫bottomup,就是先形成小的一些物质,就是团块。然后这些小的物质一点一点来凝聚,最后凝聚成什么?一个一个的星系,总之不管是由大块变成小块的,还由小块的变成大块的,总之要形成什么?形成我们现在的星系,也就是说,宇宙大爆炸之后,大约十亿年,就开始出现形成了星系。
这个图是一个模拟图,就模拟一下这个星系是怎么形成的,现在就是做一个它的模拟过程。你看这些个团块在相互之间互相吸引,并合在一起,最后呢,形成了几个星系,好,就形成这个星系,那么我们这个动画呢,最初看到几个团块是由哈勃空间望远镜拍摄下来了,我们然后模拟,那些团块根据我们这个模拟过程最后就形成这个星系。
那么现在宇宙中有多少星系呢?数也数不清,我们再看几个,那么这就是真实拍下来的宇宙空间的一部分。你会看到什么,弥漫着很多的物质,这些个物质呢就在不断地形成新的星球,不断地形成新的星球,那么宇宙中和我们银河系一样的星系多不多,太多了,就宇宙中有很多很多和我们银河系一样的类似的星系,你要说我们银河系漂亮不漂亮,跟这个星系比的话,可能还没有这个星系漂亮,这个星系叫做漩涡星系,中间有一个核,是非常漂亮的,所以这个星系在那儿不停的旋转,这就是一个和我们银河系类似的一个河。
7.太阳是怎样形成的
太阳系是四十六亿年前伴随着太阳的形成而形成的。
太阳星云由于自身引力的作用而逐渐凝聚,渐渐形成了一个由多个天体按一定规律排列组成的天体系统。太阳系的成员包括一颗恒星、九大行星、至少六十三颗卫星、约一百万颗小行星、无数的彗星和星际物质等。
太阳是银河系中一颗普通的恒星。根据恒星演化理论,太阳与其他大多数恒星一样,是从一团星际气体云中诞成的。
这团气体云存在于约四十六亿年前,位于银河系的盘状结构中,离中心约25亿亿公里。其体积约为现在太阳的500万倍,主要成份是氢分子。
这就是“太阳星云”。经历四十多万年的收缩凝聚,星云中心诞生了一颗恒星,它就是太阳。
在太阳形成以后不久,残存在太阳周围的一些气体和尘埃,形成了围绕太阳旋转的行星和诸多小行星和彗星等其他太阳系天体,包括的地球和月亮。 太阳系九大行星与太阳的位置排列图。
从左到右分别是太阳、水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。 太阳在浩瀚的宇宙中谈不上有什么特殊性。
组成银河系的有大约两千亿颗恒星,而太阳只是其中中等大小的一颗。太阳已的年龄有五十亿岁,正处在它一生中的中年时期。
作为太阳系的中心,地球上所有生物的生长都直接或间接地需要它所提供的光和热。太阳内核的温度高达摄氏一千五百万度,在那儿发生着氢氦核聚变反应。
核聚变反应每秒钟要消耗掉约五百万吨的物质,并转换成能量以光子的形式释放出来。这些光子从太阳中心到达太阳表面要花一百多万年。
光子从太阳中心出发后先要经过辐射带,沿途在与原子微粒的碰撞丢失能量。随后要经过对流带,光子的能量被炽热的气体吸收,气体在对流中向表面传递能量。
到达对流带边缘后,光子已经冷却到五千五百摄氏度了。我们所能直接看到的是位于太阳表面的光球层。
光球层比较活跃,温度约为摄氏六千多度,属于比较“凉爽”部分。光球层上有一个个起伏的对流单元“米粒”。
每个米粒的直径在一千六百公里左右,它们是一个个从太阳内部升上来的热气流的顶问。就是在不断的对流活动中,太阳每秒钟向宇宙空间释放着相当于一千亿个百万吨级核弹的能量。
8.太阳的形成
在群星之间,并不是空无一物,而是布满了物质,是气体,尘埃或两者的混合物.其中一种低温,不发光的星际尘云,相信是形成恒星的基本材料.这些黑暗的星际尘云温度很低,约为摄氏260至160之间.天文学家发现这类物质如果没有什麽外力的话,这些星际尘云就如天上的云朵,在太空中天长地久的飘著.但是如果有些事情发生,例如邻近有颗超新星爆炸,产生的震波通过星际尘云时,会把它压缩,而使星际尘云的密度增加到可以靠本身的重力持续收缩. 这种靠本身重力使体积越缩越小的过程,称为”重力溃缩”.也有一些其他的外力,如银河间的磁力或尘云间的碰撞,也可能使星际云产生重力溃缩.大约在五十亿年前,一个称为”原始太阳星云”的星际尘云,开始重力溃缩.体积越缩越小,核心的温度也越来越高,密度也越来越大.当体积缩小百万倍后,成为一颗原始恒星,核心区域温度也升高而趋近於摄氏一千万度左右.当这个原始恒星或胎星的核心区域温度高逹一千万度时,触发了氢融合反应时,也就是氢弹爆炸的反应.此时,一颗叫太阳的恒星便诞生了.经过一连串的核反应,会消耗掉四个氢核,形成一个氦核,而损失了一点点的质量.依据爱因斯坦质量和能量互换的方程式E=MC^2,损失的质量转化为光和热辐射出去,经过一路的碰撞,吸收再发射的过程,最后光和热传到太阳表面,再辐射到太空中一去不返,这也就是我们所看到的太阳辐射.当太阳中心区域氢融合反应产生的能量传到表面时,大部份以可见光的形式辐射到太空.在五十忆年前刚形成的太阳并不稳定,体积缩胀不定.收缩的重力遭到热膨胀压力的阻挡,有时热膨胀力扬头,超过了重力,恒星大气因此膨胀.但是一膨胀,温度就跟著下降.膨胀过头,导致温度过低,使热膨胀压力挡不住重力,则恒星大气开始收缩.同样的,一收缩,温度就跟著上升,收缩过头,导致温度过高, 又使热膨胀压力超过重力, 恒星大气又开始膨胀.这种膨胀,收缩的过程反覆发生,加上周围还笼罩在云气中,因此亮度变化很不规则.但是胀缩的程度慢慢缩小,最后热膨胀力和收缩力达到平衡,进入稳定期.此时,太阳是一颗黄色的恒星,差不多就像我们现在看到的一样.太阳进入稳定期后,相当稳定的发出光和热,可以持续一百亿年之久.这期间占太阳一生中的90%,天文学家特称为”主序星”时期.太阳成为一颗黄色主序星,至今己有五十亿年,再过五十亿年,太阳度过一生的黄金岁月后,将进入晚年.有足够长的稳定期,对行星上的生命发生非常重要.以地球的经验来说,地球太约和太阳同时形成,将近十亿年后才出现生命,经过四十多亿年后,才发展出高等智慧的生物.因此,天文学家要找外星生命,只对生存期超过四十亿的恒星有兴趣.太阳在晚年将成为红巨星太阳在晚年时,将己经耗尽核心区域的氢,这时太阳的核心区域都是温度较低的氦,周围包著的一层正在进行氢融合反应,再外围便是太阳的一般物质.氢融合反应产生的光和热,正好和收缩的重力相同.核心区域的氦由於温度较低,而氦的密度又比氢大,所以重力大於热膨胀力而开始收缩,核心区域收缩产生的热散布到外层,加上外层氢融合反应产生的热,使得太阳外部慢慢膨胀,半径增大到吞没水星的范围.随著太阳的膨胀,其发光散热的表面积也随之增加,表面积扩大后,单位面积所散发的热相对减少,所以太阳一边膨胀,表面温度也随之降到摄氏三千度,在发生的电磁辐射中,以红光最强,所以将呈现一个火红的大太阳,称为”红巨星”.在红巨星时期的太阳不稳定,外层大气受到扰动会造成膨胀,收缩的脉动效应,而且脉动的周期和体积大小关.想想果冻的情形,轻拍一下果冻,它便会晃动,而且果冻越大,晃动的程度越小.同样的道理,红巨星的体积越大,膨胀,收缩的周期也越长.简单来说,五十亿年后,太阳核心区域收缩的热将导致外部膨胀,变成一颗红巨星.充满氦的核心区域则持续收缩,温度也随之增加.当核心区域的温度升至一亿度时,开始发生氦融合反应,三个氦经过一连串的核反应后融合成为一个碳,放出比氢融合反应更巨量的光和热,使太阳外层急速膨胀,连地球也吞没了,成为一个体积超大的红色超巨星.太阳的末路:白矮星相似的过程是在红色超巨星的核心区域再次发生,碳累积越来越多,碳的密度比氦大,相对的收缩的重力也更大,史的碳构成的核心区域收缩下去.但是当此区域收缩到非常紧密结实的程度,也就是碳原子核周围所有的电子都挤在一起,挤到不能再挤时,这种紧密的压力挡住了重力收缩.虽然此时的温度比摄氏一亿度高很多,但是还没有高到可以产生碳融合反应的地步.因此,太阳核心区域不再收缩,但也没有多余的热使外层膨胀,就如此僵持著,形成了白矮星.由於白矮星的核心没有核融合反应来供给光与热,整个星球越来越暗,逐渐黯淡下去,最后变成一颗不发光的死寂星球黑矮星.经过理论上的计算,白矮星慢慢冷却变成黑矮星的过程非常漫长,超过一百多亿年,而银河系的形成至今不过一百多亿年,因此天文学家认为银河系还没有老到可以形成黑矮星.经过计算,太阳体积缩小一百万倍,约像地球一样大时,物质间拥挤的的程度才足。
9.太阳系的形成简介
太阳系 (Solar System)就是我们现在所在的恒星系统。它是以太阳为中心,和所有受到太阳引力约束的天体的集合体:8颗行星冥王星已被开除、至少165颗已知的卫星,和数以亿计的太阳系小天体。这些小天体包括小行星、柯伊伯带的天体、彗星和星际尘埃。广义上,太阳系的领域包括太阳、4颗像地球的内行星、由许多小岩石组成的小行星带、4颗充满气体的巨大外行星、充满冰冻小岩石、被称为柯伊伯带的第二个小天体区。在柯伊伯带之外还有黄道离散盘面、太阳圈和依然属于假设的奥尔特云。
形成和演化
艺术家笔下的原行星盘
太阳系的形成据信应该是依据星云假说,最早是在1755年由康德和1796年由拉普拉斯各自独立提出的。这个理论认为太阳系是在46亿年前在一个巨大的分子云的塌缩中形成的。这个星云原本有数光年的大小,并且同时诞生了数颗恒星。研究古老的陨石追溯到的元素显示,只有超新星爆炸的心脏部分才能产生这些元素,所以包含太阳的星团必然在超新星残骸的附近。可能是来自超新星爆炸的震波使邻近太阳附近的星云密度增高,使得重力得以克服内部气体的膨胀压力造成塌缩,因而触发了太阳的诞生。 被认定为原太阳星云的地区就是日后将形成太阳系的地区,直径估计在7,000至20,000天文单位,而质量仅比太阳多一点(多0.1至0.001太阳质量)。当星云开始塌缩时,角动量守恒定律使它的转速加快,内部原子相互碰撞的频率增加。其中心区域集中了大部分的质量,温度也比周围的圆盘更热。当重力、气体压力、磁场和自转作用在收缩的星云上时,它开始变得扁平成为旋转的原行星盘,而直径大约200天文单位,并且在中心有一个热且稠密的原恒星。 对年轻的金牛T星的研究,相信质量与预熔合阶段发展的太阳非常相似,显示在形成阶段经常都会有原行星物质的圆盘伴随着。这些圆盘可以延伸至数百天文单位,并且最热的部分可以达到数千K的高温。 一亿年后,在塌缩的星云中心,压力和密度将大到足以使原始太阳的氢开始热融合,这会一直增加直到流体静力平衡,使热能足以抵抗重力的收缩能。这时太阳才成为一颗真正的恒星。 相信经由吸积的作用,各种各样的行星将从云气(太阳星云)中剩余的气体和尘埃中诞生: 1.当尘粒的颗粒还在环绕中心的原恒星时,行星就已经开始成长; 2.然后经由直接的接触,聚集成1至10公里直径的丛集; 3.接着经由碰撞形成更大的个体,成为直径大约5公里的星子; 4.在未来得数百万年中,经由进一步的碰撞以每年15厘米的的速度继续成长。 在太阳系的内侧,因为过度的温暖使水和甲烷这种易挥发的分子不能凝聚,因此形成的星子相对的就比较小(仅占有圆盘质量的0.6%),并且主要的成分是熔点较高的硅酸盐和金属等化合物。这些石质的天体最后就成为类地行星。再远一点的星子,受到木星引力的影响,不能凝聚在一起成为原行星,而成为现在所见到的小行星带。 在更远的距离上,在冻结线之外,易挥发的物质也能冻结成固体,就形成了木星和土星这些巨大的气体巨星。天王星和海王星获得的材料较少,并且因为核心被认为主要是冰(氢化物),因此被称为冰巨星。 一旦年轻的太阳开始产生能量,太阳风会将原行星盘中的物质吹入行星际空间,从而结束行星的成长。年轻的金牛座T星的恒星风就比处于稳定阶段的较老的恒星强得多。 根据天文学家的推测,目前的太阳系会维持直到太阳离开主序。由于太阳是利用其内部的氢作为燃料,为了能够利用剩余的燃料,太阳会变得越来越热,于是燃烧的速度也越来越快。这就导致太阳不断变亮,变亮速度大约为每11亿年增亮10%。 从现在起再过大约76亿年,太阳的内核将会热得足以使外层氢发生融合,这会导致太阳膨胀到现在半径的260倍,变为一个红巨星。此时,由于体积与表面积的扩大,太阳的总光度增加,但表面温度下降,单位面积的光度变暗。 随后,太阳的外层被逐渐抛离,最后裸露出核心成为一颗白矮星,一个极为致密的天体,只有地球的大小却有着原来太阳一半的质量。最后形成暗矮星。