1.数学小故事10篇(最简短的)
一天,野人抓到一只兔子,他发明了1这个符号来记录百今天的收获.一天,野人抓到两只兔子,他发明了2这个符号来记录今天的收获.一天,野人抓到三只兔子,他发明了3这个符号来记录今度天的收获.一天,野人抓到四只兔子,他发明了4这个符号来记录今天的收获.一天,野人抓专到五只兔子,他发明了5这个符号来记录今天的收获.一天,野人抓到六只兔子,他发明了6这个属符号来记录今天的收获.一天,野人抓到七只兔子,他发明了7这个符号来记录今天的收获.一天,野人抓到八只兔子,他发明了8这个符号来记录今天的收获.一天,野人抓到十只兔子,他发明了10这个符号来记录今天的收获.后来,这几个数字广为流传.人们甚至用野人的名字来作为地名来纪念他.这就不为后人所知了。
2.数学小故事10篇(最简短的)
一元钱哪里去了
三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪污的2元总共29元。那一元钱到哪去了?
分苹果
小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。
小咪的爸爸是怎样做的呢?
小马虎数鸡
春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗? 『本文由第一范文网整理,版权归原作者、原出处所有。』
来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗 ?”“
家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗?
3.谁有小学生数学趣味性故事,要短一点,完整一点的
蚂蚁爬绳问题:一绳长1M,一蚂蚁从绳的一端爬向另一端,速度为每秒1CM,同时,绳子以每秒10CM的速度均匀伸长,问:蚂蚁能否达到绳的另一端?如能,需多长时间?如不能,请说明理由。
(假设绳子质量无限好,蚂蚁寿命无限长)公鸡5元3只,母鸡5元2只,合在一起卖10元五只,赔了?前些日子,巴依“老爷”的小聪明非但没有得手,还白白损失了七个银环,心疼得要死。一贯坑害别人的他,这口气怎能咽得下去呢?这不他又神气活现的出现在了集市上,不知谁今天又要倒霉了? “卖鸡喽,公鸡5元3只,母鸡5元2只,快来买呀!”顺着叫卖声,巴依“老爷”来到了鸡滩前,只见他贼眼珠一转,计上心来。
“嘿,老头儿,你这有多少只公鸡?多少只母鸡呀?”“各有30只。”卖鸡的老大爷颤颤微微的回答。
“好了,这些鸡我都要了。既然公鸡5元3只,母鸡5元2只,干脆公鸡、母鸡合在一起卖10元钱5只,也省得罗嗦,卖不卖?”老大爷一想,10元钱5只,这样也不吃亏,于是就答应了他的要求。
猎人的手表:一个住在深山中的猎人,他只有一只机械表挂在手上,这天,表因忘了上发条而停了,附近又没有地方可以校对时间。他决定下山到市集购买日用品,出门前他先上紧机械表的发条,并看了当时的时间是上午6:35(时间已经是不准了),途中会经过电信局,电信局的时钟是很准的,猎人看了钟并记下时间,上午9:00,到过市集采购完,又绕原路经过电信局,看了当时电信局的时钟指在上午10:00,回到家里,手上的表指著上午10:35。
猎人如何调校出正确的时间呢?此时的标准时间应该是多少? 她们的年龄是多大:”你在忙什么呢,比尔,”教授留意地说。这时他的这位朋友正一口气喝完剩下的咖啡, 站起来要走.”准备带三个女孩乘车游览!”比尔答道。
教授笑了:”原来如此!敢问三位佳丽芳龄几许?”比尔思考片刻说:”把她们年龄乘在一起得到2450,可她们年龄和恰是您年龄的两倍”。 教授摇了摇头说:”非常灵巧,但对她们的年龄仍然有疑问。
“比尔还在那里,他补充道:”是的,我忘了提起,我的年龄至少要比那个岁数最大的小一岁。”而这使得一切都变得清楚了! 当然,教授是知道他朋友的年龄的,请问,你能算出他们的年龄吗?绳长多少: 一根绳子不知长, 三折来与四折量, 三比四折长2尺, 这条绳子有多长?渔夫和草帽:有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。
河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!” 正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。
但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。
于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。 在静水中,渔夫划行的速度总是每小时5英里。
在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。
例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。 如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?小狗赛跑: 两只小狗赛跑,一只沿大圆跑一圈后回到A点,另一只跑完两小圆后回到A点。
请你想一想,当两只小狗同时起跑,而且速度也相同的话,谁是冠军得主?哥德巴赫猜想:哥德巴赫是德国数学家。1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:”我的问题是这样的:随便取某一个奇数,比如77,可以把它写成三个素数之和:77=53+17+7;再任取一个奇数,比如461,461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。
这样,我发现:任何大于7的奇数都是三个素数之和。但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。
“欧拉回信说,这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:2N+1=3+2(N1),其中2(N1)≥4.若欧拉的命题成立,则偶数2(N1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。
现在通常把这两个命题统称为哥德巴赫猜想。
4.有关于数学的趣味故事
1、数学小故事——找零钱 一家手杖店来了一个顾客,买了30元一根的手杖.他拿出一张50元的票子,要求找钱. 店里正巧没有零钱,店主到邻居处把50元的票子换成零钱,给了顾客20元的找头. 顾客刚走,邻居慌慌张张地奔来,说这张50元的票子是假的.店主不得已向邻居赔偿了50元.随后出门去追那个顾客,并把他抓住说:“你这个骗子,我赔给邻居50元,又给你找头20元,你又拿走了一根手杖,你得赔偿我100元的损失.” 这个顾客却说:“一根手杖的费用就是邻居给你换零钱时你留下的30元,因此我只拿了你70元.”请你计算一下,手杖店真正的损失是多少?这里要补充一下,手杖的成本是20元.如果这个顾客行骗成功,那么共骗得了多少钱?2、故事:猴子捞帽一群猴子在井旁玩,一阵风将一只猴子的帽子吹到井里,他招呼来18个小伙伴,从井上方的松上一个接一个去捞帽子,有4只猴子没有上树,就捞着了帽子,问:是几只猴子上树下井接在一起把帽子捞上来的?3、故事:蜗牛何时爬上井?一只蜗牛不小心掉进了一只枯井里,它趴在井底上哭起来,一只癞蛤蟆过来,翁声翁气的对蜗牛说:“别哭了,小兄弟,哭也没用,这井壁又高又滑,掉到这里只能在这里生活了。
我已经在这里生活了许多年了。蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀!我决不能像它那样生活在又黑又冷的井底里。”
蜗牛对癞蛤蟆说:“癞大叔,我不能生活在这里,我一定要爬出去,请问这口井有多深?”“哈哈哈……,真是笑话,这井有10米深,你小小年纪。又背负着这么重的壳,怎么能爬出去呢?”“我不怕苦不怕累,每天爬一段,总能爬出去!”第二天,蜗牛吃得饱饱的,开始顺着井壁往上爬了,它不停的爬呀爬,到了傍晚,终于爬了5米,蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就可以爬出去了。”
想着想着不知不觉睡着了,早上,蜗牛被一阵呼噜声吵醒了,一看,原来是癞大叔还以睡觉,他心里一惊:“我怎么离井底这么近?”原来,蜗牛睡着以后,从井壁上滑下来4米,蜗牛叹了一口气,咬咬牙,又开始往上爬,到傍晚又往上爬了5米,可晚上,蜗牛又滑下来4米,就这样,爬呀爬,滑呀滑,最后坚强的蜗牛终于爬上了井台。聪明的小朋友你能猜出来蜗牛用了多少天才爬上井台的吗。
5.中国著名数学家生活中的趣味小故事(简短一点,20字到30字以内)
“**”开始后,正在外地推广“双法”的华罗庚被急电召回北京写检查,接受批判。
**总理得知这一情况后指示:“统筹方法还是要搞的。”1970年4月,**根据**的指示,邀请了七个工业部的负责人听华罗庚讲优选法、统筹法。
这之后,凭个人的声誉,到各地组建“推广优选法、统筹法小分队”,亲自各地去推广“双法”,为工农业生产服务。小分队共去过26个省、自治区和直辖市,所到之处,都掀起了科学实验与实践的群众性活粉碎“四人帮”后,他被任命为中国科学院副院长。
他多年的研究成果《从单位圆谈起》、《数论在近似分析中的应用》(与王元合作)、《优选学》等专著也相继正式出版了。 1979年5月,他在和世界隔绝了10多年以后,到西欧作了七个月的访问1982年11月,他第二次患心肌梗塞症。
1983年10月,他应美国加州理工学院邀请,赴美作为期一年的讲学活动。在美期间,他赴意大利里亚利特市出席第三世界科学院成立大会,并被选为院士。
华罗庚担任的社会工作很多。他是第一至第六届全国人大常委会委员;他于1952年9月加入民盟,1979年当选为民盟中央副主席。
他1958年就提出了加入中国**的请求,1979年6月被批准加入中国**,在答**同志的勉励时他表示:“横刀哪顾头颅白,跃进紧傍青壮人,。
6.我想要短一点的数学故事
1、唐僧师徒摘桃子 一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。
不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子? 八戒憨笑着说:师父,我来考考你。
我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个? 沙僧神秘地说:师父,我也来考考你。
我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个? 悟空笑眯眯地说:师父,我也来考考你。
我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个? 唐僧很快说出他们每人摘桃子的个数。
你知道他们每人摘多少个桃子吗?2、数学家小时候的故事——高斯 斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。 高斯长大后,成为一位很伟大的数学家。
高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。 3、从前有一位老年人,在他临终时,三个儿子围在床前。
他对儿子们说:“我有十七匹马,留给你们,三个人分。分马的时候,老大呢,出力最多,得总数的二分之一;老二嘛,得总数的三分之一;老三最小,你呀,就拿总数的九分之一。”
勉强说完这几句,老人就去世了。三兄弟执行遗嘱时,一致认为这些马是父亲生前心爱之物,决不能将其中任何一匹劈成几块瓜分。
但是遗嘱又要完全照办,如何是好呢?正巧,这时他们的老娘舅骑马赶来了,听完事由,眉毛一扬,说:“我来分。”猜猜看,老娘舅怎样分马?因为希望每人得到的马都是整数匹,所以根据遗嘱,在分马的时候,马的匹数应该是三个分母的公倍数。
分母2、3、9的最小公倍数是18,因而在分马时的马匹总数最好能成为18的倍数。老人留给儿子们的马是17匹,老娘舅把自己带来的一匹马临时借出来凑数,共有18匹马参加分配。
准备就绪,老娘舅开始宣读和执行遗嘱:“……分马的时候,老大呢,出力最多,得总数的二分之一……”宣读到这里,老娘舅数出9匹马,让老大领过去:老二嘛,得总数的三分之一……”读到这里,老娘舅数出6匹马,让老二领过去:“老三最小,你呀,就拿总数的九分之一。”读完最后这一句,老娘舅数出2匹马,让老三领过去:三位晚辈分到手的马,总和恰好是父亲留下的17匹:9+6+2=17。
分马场地上的18匹马,现在剩下最后一匹,这当然就是老娘舅自己带来临时借用的那匹,依然物归原主。 4、北宋的一个夜晚,一家小酒店的老板正和伙计一起堆酒坛。
因为近来生意特别好,酒坛自然也就多。老板一边在心里乐,一边盘算着如何发更大的财。
他要把酒坛堆得整整齐齐,美观大方,吸引更多的顾客光临酒店。酒坛堆得非常漂亮,一层一层整整齐齐。
酒店门口的招幌迎风飘扬,使人不得不驻足逗留,忍不住想进店喝几盅。酒店老板得意扬扬之际,想数数酒坛一共有多少只。
可是,数坛子也并不轻松,老板从前面绕到后面,又从后面绕到前面,刚刚擦干的汗水又冒出来了,伙计们都笑了第二天。这堆酒坛果然吸引了不少顾客,老板望着酒坛,乐不可支。
这时,一位衣冠楚楚的青年书生走了过来,面对酒坛,若有所思。老板心想:我昨天为了数清这堆酒坛,花了很大的功夫,这位青年相貌不凡,我倒要考考他看。
“年轻人,你知道这堆酒坛一共有多少个吗?”老板半开玩笑地问道。”这很容易,只要你告诉我这堆酒坛最上面的那层一共几排,每排多少个,一共有几层。
根本不用数,我马上就知道这堆酒坛的数目。”年轻人这么说话,显然有十足的把握。
“噢!”老板心想:这位年轻人真会说大话,不妨把他提的条件告诉他,看看他的能耐到底有多大。于是老板爽快地说:”最上面那层酒坛是四排,每排8个,第二层是五排,每排9个……””好了,一共七层,”年轻人打断了老板的话,不加思索地报出了答案,”一共567个酒坛。
对吗?”老板一下子惊得连张开的嘴巴也忘记合拢了。这么快!老板马上把年轻人请进酒店,上茶,敬酒,招待得万分周到。
老板真是打心眼佩服这位青年,又是请教姓名,又是讨教数坛的方法。这位青年就叫沈括。
优越的家庭生活条件使他有机会读书,加上他好奇心强,肯钻研,于是他就成了很有才学的人。沈括回答老板说:”我数这坛子的方法其实非常简单,因为最中间那层共77个,共七层,只要再乘7,最后加上常数28就行了。
“沈括从小。
7.数学家的小故事,20字左右的,急需啊
1、欧拉不满10岁就开始自学《代数学》。
这本书连他的几位老师都没读过。可小欧拉却读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教。
2、华罗庚幼时爱动脑筋,因思考问题过于专心常被同伴们戏称为“罗呆子”,但是他并不在意别人嘲笑他。拓展资料: 1、莱昂哈德·欧拉莱昂哈德·欧拉 ,1707年4月15日~1783年9月18日,瑞士数学家、自然科学家。
1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。
13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。
他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。
此外欧拉还涉及建筑学、弹道学、航海学等领域。瑞士教育与研究国务秘书Charles Kleiber曾表示:“没有欧拉的众多科学发现,今天的我们将过着完全不一样的生活。”
法国数学家拉普拉斯则认为:读读欧拉,他是所有人的老师。2、华罗庚华罗庚(1910.11.12—1985.6.12), 出生于江苏常州金坛区,祖籍江苏丹阳。
数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。中国第一至第六届全国人大常委会委员。
他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,并被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等。
参考资料:莱昂哈德·欧拉——百度百科参考资料:华罗庚——百度百科。
8.趣味数学小故事短一点急
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是: 1+2+3+ 。
.. +97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗? 高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ 。.. +96+97+98+99+100 100+99+98+97+96+ 。
.. +4+3+2+1 =101+101+101+ 。.. +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050> 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才。
9.数学家趣味的小故事(三分钟左右能讲完,不能太短,也不能太长)
1832年5月29日,法国年轻气盛的伽罗瓦为了所谓的“爱情与荣誉”打算和另外一个人决斗。
他知道对手的枪法很好,自己获胜的希望很小,很可能会死去。他问自己,如何度过这最后的夜晚?在这之前,他曾写过两篇数学论文,但都被权威轻蔑地拒绝了:一次是被伟大的数学家柯西;另一次是被神圣的法兰西科学院他头脑中的东西是有价值的。
整个晚上,他把飞逝的时间用来焦躁地一气写出他在科学上的遗言。在死亡之前尽快地写,把他丰富的思想中那些伟大的东西尽量写出来。
他不时中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。 他在天亮之前那最后几个小时写出的东西,一劳永逸地为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一个极为重要的分支——群论。
第二天上午,在决斗场上,他被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去。”
他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。
数学家的问题费马是17世纪法国图卢兹议会的议员,一个诚实而勤奋的人,同时也是历史上最杰出的数学业余爱好者。在其一生中,他给后代留下了大量极其美妙的定理;同时,由于一时的疏忽,也向后世的数学家们提出了严峻的挑战。
费马有一个习惯,他在读书的时候喜欢把思考的结果简略。有一次,他在阅读时写下了这样的话:“……将一个高于2次的幂分为两个同次的幂,这是不可能的。
关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”这个定理现在被命名为“费马大定理”,即:不可能有满足xn+yn=zn这就是费马对后世的挑战。
为了寻找这个定理的证明,后世无数的数学家发起了一次又一次的冲锋,但都败下阵来。1908年,一位德国富翁曾经悬赏10万马克的巨款,奖励第一个对“费马大定理”完全证明的人。
自此定理提出后,数学家们奋斗了300多年,还是没有证出来。但这个定理肯定存在,费马知道它。
在数学上,“费马大定理”已成为一座比珠穆朗玛峰更高的山峰,人类的数学智慧只有一次达到过这样的高度,从那以后,再也没有达到过。